
Submitted to Operations Research
manuscript OPRE-2012-03-123.R1

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Sta�ng and Control of Instant Messaging Contact
Centers

Jun Luo, Jiheng Zhang
Department of Industrial Engineering and Logistics Management,

The Hong Kong University of Science and Technology,

Hong Kong S.A.R., China
jluolawren@ust.hk, j.zhang@ust.hk

In addition to traditional call centers, many companies have started building a new kind of customer contact

centers, in which agents communicate with customers via instant messaging (IM) over the Internet rather

than phone calls. A distinctive feature of the service centers based on IM is that one agent can serve

multiple customers in parallel. We choose to model such a center as a server pool consisting of many limited

processor sharing (LPS) servers. We characterize the underlying stochastic processes by establishing a fluid

approximation in the many-server heavy-tra�c regime. The limiting behavior of the stochastic processes

is shown to involve a stochastic averaging principle, and the fluid approximation provides insights into the

optimal sta�ng and control for such service centers.
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1. Introduction

Communicating with customers has become an indispensable part of modern business. Call centers

have traditionally played an important role in communication. With the development of technol-

ogy, instant messaging (IM) over the Internet has become a favored way of communicating in

many situations. More and more companies are building IM-based customer contact centers to

supplement their traditional call centers. For example, some online stores o↵er real-time chat so

that customers can ask sales representatives for more information about the listed products. On

Dell’s online store website there is a link leading to “24/7 live sales help”. The option “Chat with

us” is listed first together with other options such as “Call us”. Some companies such as Hewlett-

Packard (HP) even perform remote diagnostics and troubleshooting as part of after-sale service
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via IM. Communicating via IM has the advantage of e�cient information exchange (imagine a

sales representative sending a link to the webpage of their products rather than simply describing

the products over the phone), but it is not as convenient as a phone call since it is di�cult for

customers to access the service on the go. In general, an IM conversation may take a longer time

than a phone conversation service since the former requires both the user and the agent to read

and type to communicate, see Shae et al. (2007). Nevertheless, IM serves as a good alternative

channel for communicating with customers. In some industries, such as the online retail industry,

this new mode of communication is rapidly gaining popularity. This motivates the study of models

for IM-based customer contact centers to better manage such services.

IM-based service centers have some unique features not shared by call centers. An agent (sales

representative, technician) at a traditional call center can talk to only one customer at a time, but

an agent who is providing service via IM can chat with multiple customers simultaneously. During

an IM conversation, customers can be processed in a round-Robin fashion – an agent responds

to one request and then immediately shifts to another outstanding one from the customers he

is serving. Such a system is best modeled using the processor sharing protocol, where an agent

can distribute his attention simultaneously to all customers in service. This modeling method first

appeared in computer science, as described in Ritchie and Thompson (1974) and Kleinrock (1976).

In many computer systems, a central processing unit handles all active jobs in parallel (a technique

known as parallel processing). It should be pointed out that the protocol is an approximation of

the actual situation, but the macroscopic model promises to reveal how the system performs in

response to changes in the key parameters which can be identified from historical data.

For this study, we obtained data from a company that is operating a large IM-based service

center. The data were recorded using a standard timestamp approach that keeps track of when

a customer contacted the center and when a customer service case was opened and closed, etc.

From this data set, it emerged that it was hard to identify the required service time of a customer.

However the processor sharing protocol enables the calculation of the rate �

k

at which an agent

can complete cases when there are k customers being served simultaneously. Figure 1 illustrates

how the service rate �

k

varies with k. In the data, there are agents serving more than 5 (up to

13) customers simultaneously. However, we have decided to filter them out, since such “chats”

contribute less than 0.1% of the total records providing too few records to obtain a reliable estimate.

One reason an agent is allowed to serve multiple customers is that customers need time to process

the information the agent sends to them and to type out their next requests. During this time, the

agent would be idling if he is not handling any other customers. Arranging for one agent to serve

multiple customers helps reduce such idling, thus makes better use of the agents’ time. That is why

�

k

exhibits an increasing trend when k is small. However, as the number of parallel jobs increases,
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Figure 1 Varying Service Rate.

an agent may become less e�cient because of his limited capacity and cognitive issues caused by

switching among too many di↵erent customers. The pattern of �
k

for large k’s is thus uncertain.

For this reason, some IM-based service centers enforce a limit on the number of customers an agent

is allowed to serve at a time. Thus our model uses the limited processor sharing (LPS) protocol

for each agent. If all agents have reached the limit, an arriving customer will have to wait to

be served. With this background, we develop and evaluate a macroscopic model for an IM-based

service center. The model is basically a many-server queue with each server operating under the

LPS protocol with state-dependent service rate. We assume that all customers are homogeneous

in terms of their requirements and all servers in the server pool are homogeneous in the sense that

they operate at the same state-dependent service rates (see Figure 1).

1.1. Service Quality, Sta�ng and Control

In measuring the service qualities in traditional call centers, we often focus on quantities related

to the waiting time, such as the expected waiting time or the probability that the waiting time

exceeds a certain threshold. This makes sense since, once a customer manages to get hold of an

agent on the phone, he will exclusively have the service of the agent. Thus, the length of the actual

service time (i.e. the duration of the phone call) depends only on the nature of the particular

customer’s request. However, with web-chat services the customer is likely to share an agent with

other customers. An agent will normally become less responsive the more customers he has to

handle simultaneously. The service time (the period from the start of conversation to when the case

is closed) of a customer with a particular service request varies with the number of other customers

the agent is also serving in parallel. This is similar to the situation in computer systems where the

time it takes for a computer processor to complete a task such as opening the web browser varies

with the number of other tasks the processor is also asked to perform in parallel.



Luo and Zhang: Web-Chat Model
4 Article submitted to Operations Research; manuscript no. OPRE-2012-03-123.R1

In order to capture this distinctive feature of customer experience in an IM-based service center,

we choose a holding-cost function on the system status as the indicator for service quality. We call

the agents who are serving k customers “level k agents”. The status of the system is defined as the

number of customers waiting in queue, and the number of agents in each level (a rigorous description

will be given in the modeling part). The rationale behind using a holding cost is Little’s law which

relates customer’s sojourn (waiting and actual service) time to the total number of customers in

the system. This type of holding-cost functions is not new in the literature. For instance, George

and Harrison (2001) defined the holding cost as a function of the number of jobs in the system and

used it to describe the congestion in a single-sever queueing system. In this study, we allow the

holding-cost function to be more general than a linear function of the total number of customers

in the system. As will be shown in the mathematical model, the cost is allowed to be a general

function of the queue length and the number of customers being served by level k agents for each

k. This is to reflect di↵erent responsiveness that customers may sense while being served by agents

of di↵erent levels.

Simply increasing sta�ng will of course reduce the sojourn time of a customer. But sta�ng costs

are a major part of the operating expenses of such service centers. On the other hand, reducing

sta�ng may lead to poor service quality and the loss of goodwill or even a direct loss of revenue.

For example, customers may be so annoyed by the slow response caused by inadequate sta�ng that

they end up not buying anything from the online retailer. In this paper, the framework allows the

arrival process to be both stationary and time-varying. However, for the time-varying arrivals, we

still use a stationary sta�ng policy. This is applicable to cases where sta�ng cannot be changed

frequently or cannot be arranged to achieve a desired time-varying sta�ng. In a more general

sense, optimal time-varying sta�ng as proposed by Feldman et al. (2008) is an interesting future

direction.

In addition to sta�ng decisions, control decisions are also important in operating such a system.

There are basically two types of controls: admission control and routing control. In this study, we

do not reject customers. Admission control determines whether to admit a customer into service

immediately upon arrival. This control is implemented by setting a control threshold K, which is

the maximum number of customers an agent can serve simultaneously. If all agents are serving

K customers each, then an arriving customer will have to wait in queue. Otherwise, the arrival

is admitted into service. Routing control, on the other hand, is a lot more complicated because

there are many ways of assigning arriving customers to agents. A routing control policy must be

specified in order to operate the system. The design of optimal routing control policy alone is a very

interesting research direction (see Tezcan (2011) for study of the optimal routing policy in steady

state). In this study, we adopt the simplest and possibly the most widely used routing policy. Each
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new arrival is assigned to one of the agents with the “lightest load” at that time. An agent is said

to have the lightest load if he is handling the least number of customers compared to all other

agents. If more than one agents has the lightest load, one is chosen randomly to serve the arriving

customer. We show in this paper that even this simple policy gives rise to some complicated issues

in studying the system in transient. A larger control threshold K would help reduce customers’

waiting time before being served but it is doubtful whether this strategy is optimal. This study

sets out to model the underlying stochastic processes in order to generate some insights into the

joint sta�ng and admission control decisions involved in managing such service centers e�ciently.

1.2. An Asymptotic Framework

Balancing sta�ng costs and service quality will be formulated in this study as a discrete optimiza-

tion problem (see (12)). To solve this problem in a stochastic environment, we translate it into a

continuous and deterministic problem by examining the system in a meaningful limiting regime.

Like call centers, IM-based service centers also employ a large number of agents to handle heavy

demand. This motivates the study of models in the many-server heavy-tra�c regime proposed in

the call center study, which will be formulated in detail in Section 2.1. The basic idea is to put the

stochastic system in a regime where the demand (the arrival rate) increases and the service capacity

(the number of servers) also grows to balance out the demand. The service rate of each individual

server remains the same. This heavy-tra�c formulation is useful in applications involving humans

such as operations in call centers and patient-flow management in a hospital, since the management

can only increase the number of servers rather than making each individual server work faster to

accommodate large demand.

The limit obtained in the heavy-tra�c regime serves as an approximation to the original stochas-

tic process. The optimal solution for the continuous and deterministic optimization problem pro-

vides an approximately optimal solution for the original problem in the asymptotic sense. Roughly

speaking, the di↵erence between the optimal value for the original problem and that for the limiting

problem vanishes as the size of the original system approaches infinity.

1.3. Literature Review

To the best of our knowledge, this is the first study to approach the problem in this manner. Tezcan

(2011) has completed a parallel study using the same model, but with a di↵erent focus. Whereas

our study emphasizes both the transient behavior and the steady-state behavior of the stochastic

system under a fixed routing policy, Tezcan (2011) studied an optimal routing policy in the steady

state. In fact, they showed that under certain assumptions, the optimal routing policy coincides

with the one chosen here.
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There is a vast literature on call centers providing the foundation and inspiration for the research

reported here. The survey paper Gans et al. (2003) provided a tutorial on how call centers function

and a survey of academic research devoted to the management of their operations. The basic idea

in their study is to model a voice call center as a multi-server queue and model each agent as a

server serving only one customer at a time. The optimization problem formulated in this study

is, however, based on the framework proposed in Borst et al. (2004). It is worth pointing out

that Whitt (2006) showed that fluid models can be quite useful in approximating the performance

measures of multi-server queues. In a study of an extension of the multi-server queue, where there

are multiple customer classes and a single server pool, Atar et al. (2010, 2011) showed that fluid

approximations can be useful in designing optimal control policies for the operations. The work

of Mandelbaum et al. (1998) and Puhalskii (2008) provided a nice theoretical framework for the

study of many server queues (see Mandelbaum et al. (1998) for a general network of many server

queues) with exponentially distributed service times. Their works helped build the foundation for

some of the methodologies in this study.

The methodology in this study involves averaging principles. Only a handful of studies in the

queueing literature involve averaging principles (see Whitt (2002) for a review). Some notable

works include Co↵man et al. (1995), which studied the di↵usion limit of a two-queue polling model

with asymptotically negligible switchover times and Co↵man et al. (1998), which studied the same

subject but with non-negligible switchover times. Recently, Perry and Whitt (2011b,c, 2012, 2011a)

studied an extension of such a principle, which they named a “stochastic averaging principle” in

Perry and Whitt (2011c), to obtain both the fluid and di↵usion limits for an overloaded X-model of

multi-server queues proposed in Perry and Whitt (2009). Their approximations also led to useful

insights about the asymptotic optimal control of the system. Some of their methodologies were

based on the one developed by Hunt and Kurtz (1994), who exploited martingales and random

measures. The work of Hunt and Kurtz (1994) considered large loss networks with a large family

of control policies, building on a fundamental theory of Kurtz (1992). Though based on di↵erent

models, Hunt and Kurtz (1994), Perry and Whitt (2012) have inspired some of the methods adopted

in this study to deal with a very similar stochastic averaging principle involved in this model.

The LPS protocol is a key feature of the study. Zhang and Zwart (2008), Zhang et al. (2009, 2011)

studied extensively models with a single LPS server. In their studies, both fluid and di↵usion limits

were established to approximate the transient behavior of the underlying stochastic processes.

They have also studied the steady state limits of the system, and validated the interchange of

heavy-tra�c and steady state limits. This justifies the use of the steady state of the di↵usion limit,

which is tractable, to approximate the steady state of the original system. Closed-form formulae

were provided in Zhang and Zwart (2008) to reveal how the performance measures depend on the
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system parameters. Recently, Gupta and Zhang (2011) also studied a single LPS server with a

state-dependent service rate. Their model is closely related to the model studied here, where the

service rate of each LPS server also depends on the state (the number of customers in service).

2. Model Formulation and Asymptotic Framework

2.1. The Stochastic Model

Consider a sequence of stochastic systems indexed by n. In the nth system, there are N

n agents,

which are modeled as a server pool with N

n homogeneous LPS servers. Each agent can process

multiple customers simultaneously. Let K be the maximum number of customers each agent can

handle at any time, which is called control threshold throughout this paper. The state of the server

pool can then be described using a (K +1)-dimensional vector Zn(t) = (Zn

0 (t),Z
n

1 (t), . . . ,Z
n

K

(t))2

NK+1. For each k 2 {0,1, . . . ,K}, Zn

k

(t) denotes the number of agents who are serving k customers

at time t. We call them “level k agents”. Note that Z

n

0 (t) is the number of idling agents, and we

have
K

X

k=0

Z

n

k

(t) =N

n

, t� 0. (1)

When all agents are each servingK customers, i.e. Zn

K

(t) =N

n, an arriving customer must wait in a

bu↵er. We assume that waiting customers are served based on the first-come-first-served principle.

Let Qn(t) denote the number of customers who are waiting for service at time t. In what follows, we

assume that no customer waits in queue if there is an agent who is serving less than K customers,

i.e.

Q

n(t)(Nn

�Z

n

K

(t)) = 0, t� 0. (2)

Customers arrive to the nth system according to a general non-homogeneous Poisson process

⇤n(t) with intensity function �

n(t). As mentioned above, if all agents are serving K customers,

then an arrival has to wait. Otherwise, the arriving customer is assigned to one of the agents who

has the “lightest load” at the time. If there are multiple agents with the same “lightest load”, one

is chosen randomly to serve the arrival. Mathematically, we introduce the index process

i

n

⇤ (t) =min{0 kK :Zn

k

(t)> 0}, (3)

to identify the lightest load at time t. The process i

n

⇤ (t) serves as the indicator of how arrivals

should be assigned to agents. For example, if in⇤ (t�) = 0, then an arrival at time t is assigned to an

idling agent, yielding Z

n

0 (t) =Z

n

0 (t�)� 1 and Z

n

1 (t) =Z

n

1 (t�)+ 1. If in⇤ (t�) =K, then an arrival at

time t joins the queue, incrementing the queue size by 1.
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The data we have collected indicates that any realistic model must allow an agent’s service

speed to vary depending on how many customers he is serving simultaneously. Let �
k

denote the

service rate of a level k agent. In this paper, we assume that the service times are exponentially

distributed. Let S

n

k

(t), k = 1, . . . ,K be independent Poisson processes with rate 1. Then the total

number of customers who have been served by level k agents by time t is

D

n

k

(t) = S

n

k

✓

�

k

Z

t

0

Z

n

k

(s)ds

◆

. (4)

With the arrival, assignment, and service processes thus defined, the following stochastic dynamic

equations describe the evolution of the nth system.

Z

n

0 (t) =Z

n

0 (0)�

Z

t

0

1{in⇤ (s�)=0}d⇤
n(s)+D

n

1 (t), (5)

Z

n

k

(t) =Z

n

k

(0)+

Z

t

0

1{in⇤ (s�)=k�1}d⇤
n(s)�

Z

t

0

1{in⇤ (s�)=k}d⇤
n(s)

�D

n

k

(t)+

Z

t

0

1{Qn(s�)=0}dD
n

k+1(s), 0< k <K,

(6)

Z

n

K

(t) =Z

n

K

(0)+

Z

t

0

1{in⇤ (s�)=K�1}d⇤
n(s)�

Z

t

0

1{Qn(s�)=0}dD
n

K

(s), (7)

Q

n(t) =Q

n(0)+

Z

t

0

1{in⇤ (s�)=K}d⇤
n(s)�

Z

t

0

1{Qn(s�)>0}dD
n

K

(s). (8)

Note that the indicator function 1{Qn(s�)=0} in (6) is only e↵ective when k=K�1. When we study

the evolution of Z
K�1(·) at time epoch s, the level K may happen to be Z

n

K

(s�) =N

n. Suppose

there is a service completion from level K agents at time s, the status of the system immediately

after the service completion depends on whether there are customers in the queue. If the queue is

not empty, then a customer in queue is immediately served upon a service completion. So Z

n

K�1(s)

stays at 0 and Z

n

K

(s) stays at Nn. Only when there are no customers waiting in the queue, Zn

K�1(s)

increases by 1 and Z

n

K

(s) decreases by 1.

2.2. The Heavy-Tra�c Regime and Fluid Scaling

For the sequence of systems indexed by n, let the arrival rate and the number of agents grow in

proportion to n as n increases to infinity, while keeping the service rate {�

k

, k= 0,1, · · · ,K} fixed.

So we assume the following heavy-tra�c assumption throughout this paper.

Assumption 1 (Heavy-Tra�c). The arrival rate and the number of agents of the nth system

satisfy the condition that �̄n(·) is bounded and

�̄

n(t) =
�

n(t)

n

! �(t), (9)

N̄

n =
N

n

n

!N, (10)

as n!1, for some function �(t) and N > 0.
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The fluid scaling for the processes ⇤n, Qn and Z

n can be defined as

⇤̄n(t) =
⇤n(t)

n

, Q̄

n(t) =
Q

n(t)

n

, Z̄

n

k

(t) =
Z

n

k

(t)

n

, k= 0, . . . ,K. (11)

The relevant heavy-tra�c regime is essentially the many-server heavy-tra�c regime studied in

the call center literature, but there are quite interesting limiting dynamics which are di↵erent from

the call center models. In the heavy-tra�c regime the size of the system grows in proportion to n,

and the fluid scaling (11) divides all the quantities by n, making the processes “smooth” at the

limit. However, the stochastic dynamics equations (5)–(8) heavily rely on the index process in⇤ (t).

Note that i

n

⇤ (t) does not scale like Z

n(t). It jumps on the fixed discrete grid {0,1, . . . ,K} for all

n. So unlike traditional stochastic processes that are smoothed out in the heavy-tra�c limit, in⇤ (t)

is a jump process that instead oscillates infinitely often in heavy-tra�c. In fact, the index process

fluctuates more and more frequently as n increases. Figure 2 depicts one simulated sample path
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Figure 2 One Sample Path of the Stochastic Process Zn(t) and the Index Process in⇤ (t) for System n with

�n = 400, Nn = 200, K = 6 and � = (1,1.6,1.8,2.2,2.3,2.4).

to show the evolution of the index process in comparison with the process Z

n(t) when �

n = 400,

N

n = 200 and K = 6. In fact, the process i

n

⇤ (t) fluctuates so frequently that only lines consisting

of dense dots are apparent at this level of resolution. The oscillation of in⇤ (t) brings complexity in

applying traditional fluid approximations to the stochastic system and motivates seeking another

approach involving the stochastic averaging principle to understand the dynamics of the system.
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2.3. A Cost Function and Asymptotic Optimality

The system manager for such a service center confronts a joint problem of sta�ng and control.

The manager needs to balance his choice of sta�ng level Nn and control threshold K, because an

agent works at varying speeds depending on the number of customers he is handling. Consider a

general holding-cost function of the system status. Let h(z, q) denote the cost per unit of time the

system is in state (z, q). Let c denote the cost of employing an agent per unit of time. For sta�ng

level Nn and control level k, consider the normalized average cost over the time horizon [0, T ]

C̄

n

T

(N̄n

,K) = cN̄

n +
1

T

E


Z

T

0

h

�

Z̄

n(s), Q̄n(s)
�

ds

�

. (12)

The rationale of considering this type of cost function is to take the service quality into considera-

tion. Traditionally, only holding cost for the queue is considered in many models arising from call

center applications, such as Atar et al. (2010) and Bassamboo et al. (2006). In a call center, the

service quality depends only on the queue or waiting time in the queue, since a customer’s service

time depends entirely on the nature of his requirement. However, for IM-based service centers,

the actual service time of a customer is significantly a↵ected by the number of other customers

sharing the agent during the service period. A longer actual service time means a customer senses

worse responsiveness during his service. As pointed in Shae et al. (2007) that both time in queue

and total service duration are important measures for the quality of IM services. Intuitively, cus-

tomers being served by a level 2 agent should feel better “responsiveness” than being served by

a level 5 agent. This intuition is behind the idea of using a general function h, which can assign

di↵erent “waiting costs” to customers in di↵erent stages. For example, we can set the function to

be h(z, q) =w0q+
P

K

k=1 kwk

z

k

, where w0, . . . ,wK

are weights. The condition on the cost function is

stated in Assumption 2. Suppose we specialize the cost function to be h(z, q) = �

�1(q+
P

K

k=1 kzk),

then Little’s law gives an intuitive explanation in the stationary case. The holding cost is then

essentially counted into the customers’ average sojourn time, which is the metric used by Tezcan

(2011). Putting the holding cost and the sta�ng cost together is in the same spirit as the cost

function in Bassamboo et al. (2006). The objective is to optimize the trade o↵ between personnel

cost and the holding cost. To arrive at a the general formulation for the cost function and also

provide a solution to asymptotically optimize the total average cost, define (as in Bassamboo et al.

(2006)) the asymptotic optimality in both finite horizon and infinite horizon cases.

Definition 1. A sequence of sta�ng level {N̄n

⇤ } and a control threshold K⇤ are said to be asymp-

totically optimal for the finite horizon [0, T ] if for any other sequence of sta�ng levels {N

n

} and

control threshold K,

limsup
n!1

C̄

n

T

(N̄n

⇤ ,K⇤) lim inf
n!1

C̄

n

T

(N̄n

,K). (13)
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A sequence of sta�ng level {N̄n

⇤ } and a control threshold K⇤ are said to be asymptotically optimal

for the infinite horizon [0,1] if for any other sequence of sta�ng levels {Nn

} and control threshold

K,

limsup
T!1

limsup
n!1

C̄

n

T

(N̄n

⇤ ,K⇤) lim inf
T!1

lim inf
n!1

C̄

n

T

(N̄n

,K). (14)

We now propose a fluid model to approximate the performance of the stochastic system in the

heavy-tra�c regime, and then connect the asymptotic optimization problem to the fluid model.

3. Fluid Approximations in the Heavy-Tra�c Regime

Such a complicated system is not amenable to exact analysis, so approximations to the original

stochastic system are essential. The idea of approximating the complicated underlying stochastic

processes is to use a fluid model, which is analogous to the original stochastic model with all

the randomness removed by replacing the stochastic processes with their rate functions. However,

due to the involvement of the index process, the reduction for such models is quite di�cult. In

this section, we first consider a fluid model, which can be formulated using a set of ordinary

di↵erential equations (ODEs). After justifying its validity, we will show that the solution to the

ODEs approximates the fluid scaled stochastic processes in the heavy-tra�c regime.

3.1. A Fluid Model

Let

I(z) =min{0 kK : z
k

> 0} (15)

denote the smallest index of z’s non-zero component. In fact, the stochastic index process defined

in (3) can be written as i

n

⇤ (t) = I(Z̄n(t)). The simulation presented in Figure 2 show that the

stochastic process for all levels seems to be “smoothed out” despite the fact that the index process

cannot be. An appropriate fluid model must characterize how customer arrivals are allocated to

the server pool, which is based on the index process. For this purpose, we introduce the mapping

f : [0,N ]K+1
⇥R+ ! [0,1]K+1,

f(z,�) = (f0(z,�), f1(z,�), . . . , fK(z,�)) ,

where each component f
k

(z,�) is formally defined as

f

k

(z,�) =

8

<

:

�

k+1zk+1

�

^ 1, k= I(z)� 1,
�

1� �

k

z

k

�

�+
, k= I(z),

0, otherwise.
(16)

Intuitively, f
k

(z,�) indicates the fraction of the arrival stream which is injected into level k while

the current state of the “fluid” server pool is z and the arrival rate is �. We will show the connection

to the stochastic model in Section 3.2 when we analyze the underlying stochastic processes.
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It is clear that the fluid model lives in the space

S=
(

(z0, . . . , zK , q)2RK+2
+ :

K

X

k=0

z

k

=N and q(N � z

K

) = 0

)

. (17)

An ODE of the form

(z0(t), q0(t)) = (t, z(t), q(t)) (18)

can then be used to define the fluid model. For clearer presentation, divide space S into two

subspaces S= S+ [ S0, where

S+ = {(z, q)2 S : q > 0} , S0 = {(z, q)2 S : q= 0} .

In space S0, ODE (18) takes the form

z

0
0(t) =�f0(z(t),�(t))�(t)+ �1z1(t), (19)

z

0
k

(t) = f

k�1(z(t),�(t))�(t)� f

k

(z(t),�(t))�(t)

� �

k

z

k

(t)+ �

k+1zk+1(t), 0< k <K,

(20)

z

0
K

(t) = f

K�1(z(t),�(t))�(t)� �

K

z

K

(t), (21)

q

0(t) = f

K

(z(t),�(t))�(t), (22)

and in the space S+, the ODE (18) takes the form

z

0
k

(0) = 0, 0 kK, (23)

q

0(t) = �(t)� �

K

N. (24)

The transitions between S0 and S+ occurs at the critical point (z, q) = (0, . . . ,0,N,0), where all the

agents reach the threshold K. Whether the solution to the ODE will stay in S0 or transit to S+

depends on whether or not �(t) �

K

N . Despite the complicated form of (19)–(24), the following

theorem shows that ODE (18) is well defined.

Theorem 1 (Existence and Uniqueness). Assume that �(t) is a continuous function of t.

There exists a unique solution to the ODE (18) specified by (19)–(24), with the initial condition

(z(0), q(0))2 S.

This result justifies the existence and uniqueness of the solution to the fluid model, thus providing

a foundation for the rest of the study in this paper. To make the result more applicable, it would

be helpful to extend it to a case with a more general arrival process. Suppose the arrival rate �(t)

is a piecewise continuous function. Let 0< t1 < t2 < . . . be the jump points of �(t). Solving ODE

(18) in the time interval [0, t1] gives a unique solution. Considering t1 as the initial time point,

the ODE can be then studied in the next time interval [t1, t2]. Iteratively, we can thus show the

existence and uniqueness of the solution to the ODE over the entire time horizon.

Corollary 1. Assume that �(t) is a piecewise continuous function of t. There then exists a unique

solution to ODE (18) with initial condition (z(0), q(0))2 S.
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3.2. Stochastic Analysis

It is now necessary to show that the well-defined fluid model serves as an approximation for the

fluid scaled stochastic processes in the heavy-tra�c regime. Let D([0, T ],RK+2) be the space of all

RK+2-valued functions on [0, T ] which are right continuous with left limits.

Theorem 2 (FWLLN). Under Assumption 1, if the initial states converge in distribution to

some constants, i.e.

(Zn(0)/n,Qn(0)/n)) (z(0), q(0)), as n!1, (25)

for some (z(0), q(0)) 2 S, then the fluid scaled process (Z̄n

, Q̄

n) converges in distribution to the

fluid model solution (z, q) in Theorem 1, i.e., in the space D([0, T ],RK+2) equipped with uniform

topology,

(Z̄n(t), Q̄n(t))) (z(t), q(t)), as n!1, (26)

where (z, q) is the solution to the ODE (18) with initial condition (z(0), q(0)).

For the solution (z, q), define the associated fluid cost as

C

T

(N,K) = cN +
1

T

Z

T

0

h(z(s), q(s))ds. (27)

Based on Theorem 2, it can be shown that the expected cost will converge to the fluid cost. We

require some additional assumption on the holding-cost function.

Assumption 2. The holding-cost function h is a non-decreasing continuous function with respect

to each component. In addition, we assume there exist an ↵, A and C such that

h(2Ne, q)A exp (↵q) for all q >C, (28)

where e is the (K+1)-dimensional vector with each component being 1. In other words, we assume

that the “tail” of the holding cost in queue does not grow faster than all exponential functions.

Corollary 2. Under the same condition as Theorem 2, if the holding-cost function h satisfies

Assumption 2 and

sup
n

E[exp(↵Q̄n(0))]<1, (29)

then

C̄

n

T

(N̄n

,K)!C

T

(N,K), as n!1. (30)

Remark 1. Assumption 2 is in fact quite general. All polynomial functions clearly satisfy it. The

condition (29) is required mainly for technical reason. Alternatively, we may assume that initially

no customers wait in queue, which is a reasonable assumption in this application.
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The rest of this section will be devoted to establishing Theorem 2. The essential connection

between the fluid and the stochastic models lies in the index process in⇤ and the function f defined in

(16). Consider a small interval [t, t+�]. The number of arrivals in that interval who are assigned to a

level k agent is
R

t+�

t

1{in⇤ (s�)=k}d⇤̄n(s), and the amount of fluid injected into z

k

is f
k

(z(t),�(t))�(t)�.

Informally, the basic principle behind the convergence result in Theorem 2 is that

lim
�!0

lim
n!1

1

�

Z

t+�

t

1{in⇤ (s�)=k}d⇤̄
n(s) = f

k

(z(t),�(t))�(t). (31)

The interplay here between the in⇤ (t) and Z̄

n(t) in this model is quite interesting. The process Z̄n(t)

evolves slowly and determines the transition rates for in⇤ (t), while the process in⇤ (t) evolves quickly

and its “steady state” determines the evolution of Z̄n(t). To see this intuitively, replace ⇤̄n(t) by

�t in the above, yielding

1

�

Z

t+�

t

1{in⇤ (s�)=k}�ds=
1

n�

Z

n�

0

1{in⇤ (t+ s�
n

)=k}�

✓

t+
s�

n

◆

ds.

When n becomes large, what determines the above integral is actually the “steady state” of the

process i

n

⇤ (t+
·
n

). The above is just an informal illustration of the stochastic averaging principle

involved in the model. The co-existence of two di↵erent time scales requires untraditional method

to analyze the stochastic model in the limiting regime. One idea is to use the stochastic averag-

ing principle to prove the convergence (31). However, since i

n

⇤ (t) depends on a multi-dimensional

Markov process (Z̄n(t), Q̄n(t)), a direct analysis using the stochastic averaging principle may be

complicated. Instead, we propose to use an approach involving random measures and martingale

representation. The approach was initiated by Hunt and Kurtz (1994), and has been adopted by

Perry and Whitt (2012).

We now provide the proof for Theorem 2. Define the random measure ⌫

n by

⌫

n([0, t]⇥A) =

Z

t

0

1{Zn(s�)2A}ds, (32)

for any t > 0 and subset A⇢ Z̄K

+ , where Z̄+ =Z+[{+1}. This is a common approach to compact-

ify the space. Interested reader may refer to Kurtz (1992), Perry and Whitt (2012) for detailed

discussions. Consider the space M of all measures ⌫ on the product space [0,1)⇥ Z̄K

+ satisfying

⌫([0, t]⇥ Z̄K

+ ) = t for all t > 0. Endowing M with the Prohorov metric as in (1.1) of Kurtz (1992),

then M inherits the compactness since Z̄K

+ is compact. This will provide convenience for the proofs

later on. Let A
k

= {z 2 Z̄K : z
k

> 0 and z

j

= 0, j < k}. The indicator function of the index process

can then be written as

1{in⇤ (t�)=k} = 1{Zn(t�)2A
k

}.
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Define martingales related to the arrival and service processes

M̄

n

a

(t) = ⇤̄n(t)�

Z

t

0

�̄

n(s)ds, (33)

M̄

n

k

(t) =
1

n

✓

S

n

k

⇣

�

k

Z

t

0

Z

n

k

(s)ds
⌘

� �

k

Z

t

0

Z

n

k

(s)ds

◆

, k= 1, . . . ,K. (34)

Using the random measure ⌫

n and the above introduced martingales, the fluid scaled stochastic

dynamic equations (5)–(8) can be written as,

Z̄

n

0 (t) = Z̄

n

0 (0)�

Z

t

0

1{Zn(s�)2A0}dM̄
n

a

(s)+ M̄

n

1 (t)

�

Z

[0,t]⇥A0

�̄

n(s)⌫n(ds⇥ dy)+ �1

Z

t

0

Z̄

n

1 (s)ds,

(35)

Z̄

n

k

(t) = Z̄

n

k

(0)+

Z

t

0

1{Zn(s�)2A
k�1}dM̄

n

a

(s)�

Z

t

0

1{Zn(s�)2A
k

}dM̄
n

a

(s)

� M̄

n

k

(t)+

Z

t

0

1{Q̄n(s�)=0}dM̄
n

k+1(s)

+

Z

[0,t]⇥A
k�1

�̄

n(s)⌫n(ds⇥ dy)�

Z

[0,t]⇥A
k

�̄

n(s)⌫n(ds⇥ dy)

� �

k

Z

t

0

Z̄

n

k

(s)ds+ �

k+1

Z

t

0

1{Q̄n(s�)=0}Z̄
n

k+1(s)ds, 0< k <K,

(36)

Z̄

n

K

(t) = Z̄

n

K

(0)+

Z

t

0

1{Zn(s�)2A
K�1}dM̄

n

a

(s)�

Z

t

0

1{Q̄n(s�)=0}dM̄
n

K

(s)

+

Z

[0,t]⇥A
K�1

�̄

n(s)⌫n(ds⇥ dy)� �

K

Z

t

0

1{Q̄n(s�)=0}Z̄
n

K

(s)ds,
(37)

Q̄

n(t) = Q̄

n(0)+

Z

t

0

1{Zn(s�)2A
K

}dM̄
n

a

(s)�

Z

t

0

1{Q̄n(s�)>0}dM̄
n

K

(s)

+

Z

[0,t]⇥A
K

�̄

n(s)⌫n(ds⇥ dy)� �

K

Z

t

0

1{Q̄n(s�)>0}Z̄
n

K

(s)ds.

(38)

The following lemma establishes that the above stochastic processes are relatively compact and

gives some preliminary characterization of the limit.

Lemma 1. Under Assumption 1, if (25) holds, then the sequence {(Z̄n

, Q̄

n),⌫n

}

n2N is relatively

compact in the space D([0, T ],RK+2)⇥M and the limit of any convergent subsequence satisfies

z0(t) = z0(t)�

Z

[0,t]⇥A0

�(s)⌫(dy⇥ ds)+ �1

Z

t

0

z1(s)ds, (39)

z

k

(t) = z

k

(0)+

Z

[0,t]⇥A
k�1

�(s)⌫(dy⇥ ds)�

Z

[0,t]⇥A
k

�(s)⌫(dy⇥ ds)

� �

k

Z

t

0

z

k

(s)ds+ �

k+1

Z

t

0

1{q(s)=0}zk+1(s)ds, 0< k <K,

(40)

z

K

(t) = z

K

(0)+

Z

[0,t]⇥A
K�1

�(s)⌫(dy⇥ ds)� �

K

Z

t

0

1{q(s)=0}zK(s)ds, (41)
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q(t) = q(0)+

Z

[0,t]⇥A
K

�(s)⌫(dy⇥ ds)� �

K

Z

t

0

1{q(s)>0}zK(s)ds. (42)

To further study the limit in the above lemma, we need to characterize the limiting measure ⌫.

The following lemma is taken from Kurtz (1992), which states that the measure ⌫ has the product

form.

Lemma 2 (Kurtz (1992)). Let {(z, q),⌫} be the limit of a convergent subsequence of the processes

{(Z̄n

, Q̄

n),⌫n

}

n2N. Then for all measurable subsets � of [0, T ] and A of Z̄K+1
+

⌫(�⇥A) =

Z

�

⇡

s

(A)ds, (43)

where ⇡

s

is a probability measure on Z̄K+1
+ for all s� 0.

This is a very useful result. It says that the measure ⌫ on the product space [0, t]⇥ Z̄

K

+ can be

separated in product form. In other words,
Z

[0,t]⇥A

�(s)⌫(dy⇥ ds) =

Z

t

0

⇡

s

(A)�(s)ds. (44)

To characterize the probability measure ⇡
s

, we introduce the Markov process m
x(s) on Z̄K+1

+ , where

x= (z, q,�) (recall that � is the limit in Assumption 1). In other words, for each s,m
x(s) is a Markov

process whose transition rate depends on x(s). For j = 0,1, . . . ,K, let e
j

= (0, . . . ,0,1,0, . . . ,0) be a

(K+1)-dimensional vector with its (j+1)th component being 1 and all the rest being 0. We first

define

e

j

m

x(s) =1, for all j such that z
j

(s)> 0.

The Markov process m
x(s) evolves with the following transition rate when 0 j <K,

m

x(s) !

⇢

m

x(s) � e

j+1 + e

j

, at rate �

j+1zj+1(s),
m

x(s) � e

j

+ e

j+1, at rate �(s)1{m
x(s)2A

j

},
(45)

and

m

x(s) !m

x(s) � e

K

+ e

K�1, at rate 1{q(s)=0}�KN. (46)

Suppose I(z(s)) = k for some k= 0, . . . ,K, then it is clear that the states in S

<

= {y 2 Z̄

K+1
+ : y

j

>

0 for any j < k � 1} are transient for the Markov process, since the rates �

j+1zj+1(s) = 0 for all

j < k�1. The states in S

<

cannot be accessible from the states out of S
<

, so the Markov process is

reducible. In fact, the probability that the Markov process returns to any state in S

<

once having

left it is 0. Suppose max{k : z
k

(s)> 0}= k

⇤ for some k

⇤
� k, then the states in S

>

= {y 2 Z̄

K+1
+ :

y

j

> 0 for any j > k

⇤
} are also transient since 1{m

x(s)2A
j

} = 0 for any j > k. It is also clear that

lim
t!1 P(e

j

m

x(s)(t) = 1|e

j

m

x(s)(0) = x) = 1 for any initial state x and k  j  k

⇤. So the only

interesting component is the kth component, i.e., e
k�1mx(s). Let ⌧

<

be the first time the Markov
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process exits S

<

, then the component e

k�1mx(s) evolves as a birth-death process with birth rate

�

k

z

k

(s) and death rate �(s). Denote by P1 the steady state probability of the Markov process

m

x(s). We are only concerned with calculating P1(m
x(s) 2A

j

) for 0  j K for the purposes of

this discussion. So essentially we only need to focus on the evolution of the kth and the (k+1)th

components of m
x(s). Since e

k�1mx(s) is a birth-death process, the stationary distribution of m
x(s)

satisfies

P1
�

m

x(s) 2A

j

�

= 0, j < k� 1, (47)

P1
�

m

x(s) 2A

k�1

�

=
�

k

z

k

(s)

�(s)
^ 1. (48)

Because the (k+1)th component of m
x(s) is defined to be infinity, we have

P1
�

m

x(s) 2A

k

�

=

✓

1�
�

k

z

k

(s)

�(s)

◆+

, (49)

P1
�

m

x(s) 2A

j

�

= 0, j > k+1. (50)

The following lemma helps to connect the above defined Markov process with the probability ⇡

s

in Lemma 2.

Lemma 3. If I(z(s)) = k for some 0  k  K, then for all bounded function g : ZK+1
+ ! R such

that

Z

Z̄K+1

n

k^(K�1)
X

j=0

[g(y� e

j

+ e

j+1)� g(y)]1{y2A
j

}�(s)

+
K

X

j=k

[g(y� e

j

+ e

j�1)� g(y)]1{q(s)=0}�jzj(s)
o

⇡

s

(dy) = 0,

(51)

where ⇡

s

is the stationary distribution of the Markov process m

x(s).

With the above preparation, we are now ready to present the proof of the main result.

[ Proof of Theorem 2] It now remains to show that the limit ((z, q),⌫) satisfies the ODE (18).

According to (39)–(42), and (44), we need only show that

⇡

s

(A
k

) = f

k

(z(s),�(s)), (52)

where f
k

(z(s),�(s)) is defined as in (16). Suppose that I(z(s)) = 0, then the Markov process degen-

erates to e0mx(s) =1. So P1(m
x(s) 2A0) = 1, which is consistent with (16). Suppose I(z(s)) = k

for some 1  k  K � 1, then q(s) = 0. According to (51) with 1{q(s)=0} being just 1, it follows

from Proposition 9.2 in Ethier and Kurtz (1986) that ⇡

s

is the stationary distribution for the

Markov process m
x(s). Then (52) follows from (47)–(50). Suppose I(z(s)) =K, then there are two

cases. The first is the case where q(s) = 0. In this case, the situation is the same as that discussed
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above. The second case where q(s)> 0 is actually quite easy. According to (45) and (46), the rate

m

x(s) !m

x(s)�e

j+1+e

j

is 0 for all 0 j <K. So all the states in {y 2 Z̄

K+1
+ : y

j

> 0 for any j <K}

are transient. It is clear in this case that ⇡

s

(A
k

) = 0 for all k < K, thus ⇡

s

(A
K

) = 1. Plugging

⇡

s

into (39)–(42) and separating the expressions into the two cases depending on whether or not

q(s)> 0 yields the ODEs (19)–(21) or (23)–(24), respectively.

4. Asymptotic Optimal Sta�ng and Control Policies

4.1. An Asymptotically Optimal Policy when the Planning Horizon is Finite

Let us first develop a connection between the asymptotic optimization problem proposed in Sec-

tion 2.3 and the fluid model. Let (z, q) denote the solution to the fluid model characterized by

ODE (18). Due to the tractability of the deterministic process (z, q), what can be done in general

is to numerically solve the optimization problem

minimize C

T

(N,K)
subject to N > 0, K 2N. (53)

Under additional assumptions, we will show later that there are closed-form solutions when we

consider the infinite horizon (T !1) problem. Let (N⇤,K⇤) be an optimal solution to (53). As the

fluid model serves as a reasonable approximation for this complicated system, one would expect

that the optimal solution based on the fluid model might suggest an asymptotically optimal solution

for the stochastic problem.

Theorem 3. If N̄

n

⇤ ! N⇤ as n ! 1, then the sequence of sta�ng level {N̄n

⇤ } and the control

threshold K⇤ are asymptotically optimal.

P ick any sequence of sta�ng levels N̄

n and a control threshold K. For any convergent sub-

sequence {N̄

n

l

}, suppose that N̄n

l

!N

s

as n
l

!1. It follows from Corollary 2 and optimization

problem (53) that

lim
n

l

!1
C̄

n

l

T

(N̄n

l

,K) =C

T

(N
s

,K)

�C

T

(N⇤,K⇤) = lim
n!1

C̄

n

T

(N̄n

⇤ ,K⇤).

Since the above inequality holds for any convergent subsequence of {N̄n

} and any control level K,

the sequence {N̄

n

⇤ } and K⇤ satisfy the definition of asymptotic optimality in Definition 1.

Theorem 3 prescribes a numerical approach to asymptotically solve the joint sta�ng and control

problem for managing an IM-based service center. Due to the time-varying arrival rate and the

complexity of the underlying model, the objective function in (53), which involves the solution to

a set of ODEs, is extremely complicated. Nevertheless, the solution to the ODEs are tractable in

the sense that optimization problem (53) can be solved numerically. The solution we provide is
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particularly helpful when the arrival rate varies and sta�ng cannot be adjusted as quickly. We

illustrate through a numerical example in Section 5.3 that is contrary to the common sense, it is

not always optimal to set the control threshold to be the level where agents achieve the greatest

e�ciency.

4.2. An Asymptotically Optimal Policy when the Planning Horizon is Infinite

Consider now the stationary case where the arrival rate �(·) is constant. In this case, the outcome

of interest is the long run average cost over an infinite time horizon, i.e. lim
T!1 C̄

n

T

(N̄n

,K). An

additional assumption in this case is the monotonicity of the state-dependent service rate,

0< �1 < �2 < . . . . (54)

Interested readers are referred to Tezcan (2011) for the supporting logic of this assumption. Math-

ematically, the sequence {�

k

} is allowed to increase to infinity or to be bounded. For stability

reasons, we must also require that

N > �/ sup
k

�

k

. (55)

As a consequence of (54) and (55), there exists some k

0 such that

�

k

0
N  �< �

k

0+1N. (56)

Define z̃(N) to be the point where

z̃

k

(N) =

8

>

>

>

<

>

>

>

:

0, k < k

0
,

�

k

0+1N��

�

k

0+1��

k

0
, k= k

0
,

���

k

0N
�

k

0+1��

k

0
, k= k

0 +1,

0, k > k

0 +1.

(57)

Proposition 1. Assume that �(t)⌘ � and (54)–(55) hold. For any control threshold K > k

0, the

point (z̃(N),0) with z̃(N) defined by (57) is an invariant point of the fluid model. For any fluid

model solution (z, q) with (z(0), q(0))2 S,

(z(t), q(t))! (z̃(N),0), as t!1.

Based on this proposition, it is easy to see that the fluid cost

lim
T!1

C

T

(N,K)! cN +h(z̃(N),0)
�
=C(N). (58)

Let N⇤ denote an optimal solution to the problem

minimize C(N)
subject to N > 0.

(59)
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Theorem 4. If N̄

n

⇤ ! N⇤ as n ! 1, then the sequence of sta�ng level {N̄n

⇤ } and any control

threshold K⇤ > k

0 are asymptotically optimal for the long run average cost on infinite time horizon.

T he proof of this result is similar as the one for Theorem 3 in invoking Corollary 2 and checking

the requirement of asymptotic optimality in Definition 1. In addition, the result of Proposition 1

is also needed due to the infinite horizon.

For sta�ng levels N̄n and control threshold K, let {N̄n

l

} be a convergent subsequence such that

N̄

n

l

!N

s

as n
l

!1. By Corollary 2 and optimization problem (59),

lim
T!1

lim
n

l

!1
C̄

n

l

T

(N̄n

l

,K) = lim
T!1

C

T

(N
s

,K)

=C(N
s

)�C(N⇤)

= lim
T!1

C

T

(N⇤,K⇤) = lim
T!1

lim
n!1

C̄

n

T

(N̄n

⇤ ,K⇤).

Since the above inequality holds for any convergent subsequence of {N̄n

} and any control level K,

the sequence {N̄

n

⇤ } and K⇤ satisfy the definition of asymptotic optimality in Definition 1.

The optimization problem (59) in some cases can be solved explicitly. For example, when the

holding cost is a linear function h(z,0) = h

P

K

k=0 kzk where h is a positive constant. In this case,

the objective function (59) is a piecewise linear function in N . For each interval, (�/�
k+1,�/�k],

C(N) takes a linear form. Since the optimal value for a linear programming always occur at the

boundary, optimization problem (59) becomes

minimize �c

1
�

k

+�h

k

�

k

subject to k 2 {1,2, . . . ,K}.

(60)

Then the optimal level where all agents should be is simply k

0 = argmin
k

�

�

k

(c+hk), and the best

sta�ng level is N⇤ = �/�

k

0 . A numerical example will be presented in Section 5.4. We just point out

here that despite the monotonicity of �
i

, the graph of function C(N) (e.g. Figure 7 (a)) may still

zigzag quite irregularly, rather than being convex as the total cost function does in many ostensibly

similar applications. It is thus quite important to quantitatively calculate which level is best and

choose the appropriate sta�ng to reach that level. We also demonstrate a numerical example in

Section 5.4 where the holding-cost function h is not linear. It is interesting to see that in this case,

the steady state of the system may be somewhere between two levels rather than focusing on one

level.

5. Numerical Experiments

In this section, we present some of the numerical experiments we have carried out on the IM-based

service center model. The main purpose is to confirm our understanding of how the stochastic

process works, and test the approximations obtained from the asymptotic analysis. We also illus-

trate through some examples the importance of using quantitative insights to guide the design and

operation of such service centers.
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5.1. Validity of the Transient Approximation

In order to demonstrate the fluid approximation, we simulate a system with number of agents

N

200 = 200. Each agent can serve at mostK = 4 customers. And the service rate � = (1,1,6,1.8,2.2).

Since time-varying arrivals are allowed in the analysis, we set the arrival rate to be �200(t) = 200�(t),

where �(t) = 2 + 1sin(t). Figure 3 gives an overview of the system’s evolution with time. The

upper graph depicts an aggregation of 30 simulated sample paths, and the lower graph draws the

trajectory of the fluid model obtained by solving the ODE (18). Thirty sample paths are aggregated

to reduce the stochastic fluctuation, which the fluid model cannot capture. To obtain a better idea
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Figure 3 Simulated Stochastic Model and the Fluid Model.

how close the fluid approximation is, the fluid model solution and the aggregate of 30 simulated

sample paths are overlaid in Figure 4. Systems of three di↵erent sizes Nn = n, n= 50,100,200 are

simulated. The corresponding arrival rates are scaled accordingly �

n(t) = n�(t), n = 50,100,200.

For comparison purpose, the fluid scaled sample paths i.e. n�1
Z

n(t) and n

�1
Q

n(t), are plotted.

Only level 2 and queue are shown in the figure for saving the space, the comparisons for the other

levels are similar. The approximation becomes more accurate for larger systems.

5.2. Validity of the Steady-State Approximation

In this section, we study the approximation for the steady state of the system using the invariant

state of the fluid model in Proposition 1. Consider an example where K = 6 with the service rate

� = (1,1.6,1.8,2.2,2.3,2.4). Choose the system size to be N

200 = 200 with the arrival rate fixed

to be a constant �

n = 390. Figure 5 depicts the aggregate of 30 simulated sample paths over a
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Figure 4 Comparisons of the Simulated Stochastic Model and the Fluid Model for Systems of Di↵erence Sizes.

relatively long time horizon. It shows that the system “stabilizes” in the state where about 62.5%

of the agents are in level 3 and the rest in level 4. With this set of parameters, we can easily

calculate by (57) that the invariant point is z̃ = (0,0,0,5/8,3/8,0,0) and q̃= 0.
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Figure 5 Simulated Long Term Behaviors of the Stochastic Model and the Fluid Model.

It is worth pointing out that the approximation using the fluid invariant performs well not

only for systems with exponential service times, but also for systems with general service times.

We simulate the system with three di↵erent service time distributions, Exponential(1), Erlang(2,

0.5) and Log-Normal (1,4), which all have mean 1. The control threshold is set at K = 6, with

service rate � = (1,1.6,1.8,2.2,2.3,2.4). The system size is N 200 = 200 and the arrival rate is �200 =

390. We ran simulation experiments for 16 independent replications with the three service time

distributions over a relatively long time horizon [0,104]. Table 1 reports both the estimates and
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Performance Exponential Erlang-2 LN(1,4) Approximation

Level 0 0.0004 0.0003 0.0005 0
±0.0008 ±0.0007 ±0.0010 –

Level 1 0.0088 0.0084 0.0102 0
±0.0032 ±0.0024 ±0.0059 –

Level 2 1.7325 1.7174 1.7553 0
±0.0201 ±0.0154 ±0.0310 –

Level 3 122.2821 122.2991 122.3772 125
±0.3716 ±0.2532 ±0.4488 –

Level 4 75.9753 75.9740 75.8561 75
±0.3837 ±0.2649 ±0.4683 –

Level 5 0.0010 0.0006 0.0007 0
±0.0007 ±0.0003 ±0.0006 –

Level 6 0 0 0 0
Sojourn Time 1.7287 1.7287 1.7283 1.7308

±0.0007 ±0.0004 ±0.0011 –
Table 1 Comparison of Fluid Approximations with Simulation Estimates of Steady-State Performance Measures

with General Service Time Distribution.

the 95% confidence intervals. The “Approximation” column is calculated based on the invariant

state (57) for the fluid model, with sojourn time being calculated via Little’s law.

5.3. Optimal Sta�ng and Control with Time-varying Arrivals on a Finite Horizon

Consider now a sta�ng and control problem with time-varying arrivals. Assume that the service

rate � = (2.0,3.0,2.7,3.2). Thus the most e�cient level is level 4, where an agent achieves maxi-

mum service speed. However, it may not always be optimal to set the control threshold at 4, as

demonstrated in the following numerical study. In fact, one can use the fluid approximation and

Theorem 3 to serve as a quantitative guide.

We now illustrate the usefulness of the quantitative insights through a concrete example. Suppose

the service center needs to cater for the time-varying demand depicted in Figure 6(a). We use a

scaled Log-Normal density function, �(t) = 2.5 + 0.76(0.02t
p

2⇡)�1 exp(� 1
2
log2(0.02t)), to mimic

the unimodal shape of the arrival rate over a planning horizon of length 100. Assume that holding-

cost function is h(z, q) = 1⇥ (
P

k

kz

k

+ q) (in other words, the holding cost is linear and the rate is

equal to 1) and the sta�ng cost is c= 19. We plot the “fluid” cost for di↵erent control thresholds

K = 2,3,4 in Figure 6(b). Clearly the cost varies depending on the control threshold. For di↵erent

K’s, the minimum occurs at di↵erent sta�ng levels. For K = 4, the minimum occurs at N = 0.915.

However, the minimum for K = 2 occurs at N = 0.98. In this example, the optimal solution for

problem (53) is (N⇤,K⇤) = (0.98,2), which corresponds to point A on the graph. This emphasizes

the importance of making a joint decision. Even if a service center chooses the correct sta�ng level,

but the wrong control threshold (e.g. K = 4), then it will experience a significantly higher cost
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at point B. Similarly, if corrected threshold is chosen (K = 2 in this example), a wrong sta�ng

decision would make the cost at some other points on the red dotted line, which is higher than the

optimal.
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Figure 6 The Arrival Rate, and the Fluid Cost Associated with Di↵erent Control Thresholds and Number of

Agents.

To illustrate how the optimal solution based on the fluid model helps with design and control,

we simulate a stochastic system of scale n = 200. In other words, the system is fed with a non-

homogeneous Poisson process with rate n�(t). The sta�ng level corresponding to A and B in

Figure 6 is N

n = 200⇥ 0.98 = 196 and that for C is N

n = 200⇥ 0.915 = 183. Table 2 summarizes

the predicted costs based on the fluid model for di↵erent joint decisions A,B and C on the graph,

and compares them with simulations of the corresponding stochastic systems. Notice that choosing

the correct sta�ng level but wrong control threshold (point B) would incur 3.4% more expected

cost compared with the optimal choice (point A), quite consistent with the 4.8% increase predicted

by the fluid cost. It is worth pointing out that this example also demonstrates that it may not

always be optimal to set the control threshold at the most e�cient level, i.e. where �

k

achieves its

maximum.

Sta�ng and Control Fluid Cost Expected Cost 95% C.I.

A (Nn = 196, K = 2) 4112.4 4129.4 [4112.6,4146.1]
B (Nn = 196, K = 4) 4310.1 4270.2 [4252.9,4287.5]
C (Nn = 183, K = 4) 4152.1 4146.6 [4131.0,4162.1]

Table 2 Comparison between the Expected Cost and the Fluid Cost.
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5.4. Optimal Sta�ng and Control with Constant Arrivals on an Infinite Horizon

To illustrate the model for the case of a linear holding cost, set the arrival rate �= 1, the sta�ng

cost c= 2 and the holding-cost function to be h(z, q) = 1⇥ (
P

k

kz

k

+ q). Assume the service rate

� = (1,1.6,1.9,2.3,2.6,2.8) and the control threshold is set at K = 6. The fluid cost calculated using

(58) is plotted in Figure 7(a) indicated by the dotted line.

To illustrate the case of non-linear holding cost, set the arrival rate to be � = 1, the sta�ng

cost rate to be c= 10 per agent, and the holding-cost function to be h(z, q) = (
P

k

kz

k

+ q)2. The

service rate is assumed to be � = (1,1.8,2.1,2.2,2.5,2.7) and the control threshold is set at K = 6.

Figure 7(b) plots the corresponding fluid cost.
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Figure 7 Total Cost Function with Linear and Quadratic Holding-Cost Functions.

In both examples, we also plot the expected cost estimated via simulation for systems of di↵er-

ent scales n= 50,100,200. Both graphs show that the fluid approximation is suitable for sta�ng

purposes, since the expected costs of the stochastic systems dips and peaks with the correspond-

ing fluid cost. However, at some sta�ng levels, the approximation is not close enough to obtain

an accurate performance evaluation, which is beyond the aim of this paper. For a more accurate

performance evaluation, in particular for the turning points (where all agents are expected to be

in the same level), more refined approximations such as a di↵usion approximation are required.

It is also important to point out that the simulated cost functions exhibit “flat bottom” in both

examples. This suggests that the choice of sta�ng level can be quite robust. A relatively wide

range of choices of the sta�ng level gives similar costs that are close to the optimum.
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6. Conclusions and Future Work

In this paper, we study a new type of service centers where agents communicate with customers

via instant messaging. A distinctive feature is that each agent can serve multiple customers simul-

taneously. This makes modeling and analysis more challenging than for traditional call centers.

This study has shown that such a service center can be modeled as a pool of many homogeneous

servers, each operating under the processor-sharing protocol. The number of customers an agent

can serve at one time is limited, and the threshold is determined by a control policy. We provide

an asymptotic analysis for the underlying process in the many-server heavy-tra�c regime, which

is widely used to study call centers. We obtain an approximation by using the stochastic averaging

principle in the heavy-tra�c analysis. The approximation helps to characterize the complicated

queueing model using an ODE. Since the solution to the ODE is tractable, the approximation can

then be applied to solve sta�ng and control problems. Our numerical experiments confirm that the

approximation is reasonably good in both transient and steady state studies. We also demonstrate

via a few numerical examples how to use the approximation to guide the sta�ng and control of

such service centers.

These results suggest quite a few interesting directions for future study. First, this study considers

only a simple control policy which assigns arrivals to one of the agents with the lightest load. In

fact, Tezcan (2011) has studied a more complicated control policy that skips some “ine�cient”

levels. Certainly, there are many interesting problems in the routing of arriving customers. Second,

abandonment also happens in such service centers due to the impatient nature of human beings.

Slow response from an agent handling too many customers may make a customer abandon during

service. It would be interesting to allow a customer’s abandonment rate to depend on the number of

other customers being served by the same agent. Third, in this study we have assumed that service

times are exponentially distributed, which facilitated the analysis. Future research might fruitfully

apply the framework of measure-valued process to study the model with generally distributed

service times. And finally, this study is limited to the fluid approximation, which relies on the

insights of the functional law of large numbers. The functional central limit theorem might be

applied to obtain a more refined approximation to the underlying stochastic processes.

Acknowledgments
The authors gratefully acknowledge the existence of the Journal of Irreproducible Results and the support

of the Society for the Preservation of Inane Research.

References

Atar, R., C. Giat, N. Shimkin. 2010. The cµ/✓ rule for many server queues with abandonment. Oper. Res.

58(5) 1427–1439.



Luo and Zhang: Web-Chat Model
Article submitted to Operations Research; manuscript no. OPRE-2012-03-123.R1 27

Atar, Rami, Chanit Giat, Nahum Shimkin. 2011. On the asymptotic optimality of the cµ/✓ rule under

ergodic cost. Queueing Syst. 67(2) 127–144.

Bassamboo, Achal, J. Michael Harrison, Assaf Zeevi. 2006. Design and control of a large call center: Asymp-

totic analysis of an lp-based method. Oper. Res. 54(3) 419–435.

Borst, Sem, Avi Mandelbaum, Martin I. Reiman. 2004. Dimensioning large call centers. Oper. Res. 52(1)

17–34.

Co↵man, E. G., Jr., A. A. Puhalskii, M. I. Reiman. 1995. Polling systems with zero switchover times: a

heavy-tra�c averaging principle. Ann. Appl. Probab. 5(3) 681–719.

Co↵man, E. G., Jr., A. A. Puhalskii, M. I. Reiman. 1998. Polling systems in heavy tra�c: a Bessel process

limit. Math. Oper. Res. 23(2) 257–304.

Durrett, Rick. 2010. Probability: Theory and Examples. 4th ed. Cambridge University Press.

Ethier, Stewart N., Thomas G. Kurtz. 1986. Markov processes. Wiley Series in Probability and Mathematical

Statistics: Probability and Mathematical Statistics, John Wiley & Sons Inc., New York.

Feldman, Zohar, Avishai Mandelbaum, William A. Massey, Ward Whitt. 2008. Sta�ng of time-varying

queues to achieve time-stable performance. Mgt. Sci. 54(2) 324–338.

Gans, Noah, Ger Koole, Avishai Mandelbaum. 2003. Telephone call centers:tutorial,review, and research

prospects. Manufacturing & Service Operations Management 5(2) 79–141.

George, Jennifer M., J. Michael Harrison. 2001. Dynamic control of a queue with adjustable service rate.

Oper. Res. 49(5) 720–731.

Gupta, Varun, Jiheng Zhang. 2011. Limited processor sharing queues with state dependent service rates.

Tech. rep., Hong Kong University of Science and Technology.

Hunt, P. J., T. G. Kurtz. 1994. Large loss networks. Stochastic Processes and their Applications 53(2)

363–378.

Kleinrock, Leonard. 1976. Queueing Systems. Volume 2: Computer Applications. Wiley-Interscience, New

York.

Kurtz, Thomas G. 1992. Averaging for martingale problems and stochastic approximation. Applied Stochastic

Analysis , Lecture Notes in Control and Information Sciences, vol. 177. Springer, Berlin, 186–209.

Mandelbaum, Avi, William A. Massey, Martin I. Reiman. 1998. Strong approximations for markovian service

networks. Queueing Syst. 30(1/2) 149–201.

Perry, Ohad, Ward Whitt. 2009. Responding to unexpected overloads in large-scale service systems. Mgt.

Sci. 55(8) 1353–1367.

Perry, Ohad, Ward Whitt. 2011a. Di↵usion approximation for an overloaded X model via an averaging

principle. Working paper, Columbia University.



Luo and Zhang: Web-Chat Model
28 Article submitted to Operations Research; manuscript no. OPRE-2012-03-123.R1

Perry, Ohad, Ward Whitt. 2011b. A fluid approximation for service systems responding to unexpected

overloads. Oper. Res. 59(5) 1159–1170.

Perry, Ohad, Ward Whitt. 2011c. An ODE for an overloaded X model involving a stochastic averaging

principle. Stochastic Systems 1 17–66.

Perry, Ohad, Ward Whitt. 2012. A fluid limit for an overloaded X model via an averaging principle. Math.

Oper. Res. Forthcoming.

Puhalskii, Anatolii. 2008. The M

t

/M

t

/K

t

+M

t

queue in heavy tra�c.

Ritchie, D. M., K. Thompson. 1974. The Unix time-sharing system. J. ACM 17(7) 365–375.

Shae, Zon-Yin, D. Garg, R. Bhose, R. Mukherjee, S. Guven, G. Pingali. 2007. E�cient internet chat services

for help desk agents. IEEE International Conference on Services Computing (SCC 2007). 589–596.

Tezcan, Tolga. 2011. Design and control of customer service chat systems. Tech. rep., Rochester University.

Walter, Wolfgang. 1998. Ordinary di↵erential equations, Graduate Texts in Mathematics, vol. 182. Springer-

Verlag, New York.

Whitt, Ward. 2002. Stochastic-process limits. Springer Series in Operations Research, Springer-Verlag, New

York.

Whitt, Ward. 2006. Fluid models for multiserver queues with abandonments. Oper. Res. 54(1) 37–54.

Zhang, Jiheng, J. G. Dai, Bert Zwart. 2009. Law of Large Number Limits of Limited Processor-Sharing

Queues. Math. Oper. Res. 34(4) 937–970.

Zhang, Jiheng, J. G. Dai, Bert Zwart. 2011. Di↵usion Limits of Limited Processor-Sharing Queues. Ann.

Appl. Probab. 21(2) 745–799.

Zhang, Jiheng, Bert Zwart. 2008. Steady state approximations of limited processor sharing queues in heavy

tra�c. Queueing Syst. 60(3-4) 227–246.



e-companion to Luo and Zhang: Web-Chat Model ec1

Technical Proofs

EC.1. Proofs in the Fluid Analysis

Proof of Theorem 1 The function  in ODE (18) is continuous with respect to t, but not locally

Lipschitz continuous with respect to (z, q). This is also reflected in the numerical solution (see

Figure 3) where there are “sharp” turning points. So we cannot directly apply classical ODE

theorem (e.g. Theorem VI in § 10 of Walter (1998)) which requires the function  to be locally

Lipschitz continuous with respect to (z, q). The idea is to divide the space S into several regions,

and prove the existence and uniqueness in each region. Once the solution enters another region at

time ⌧ , we “restart” the ODE assuming that (z(⌧), q(⌧)) is the initial condition.

Note that in the space S+ the ODE is relatively easy to study, since only q evolves with time

t according to (24). Suppose (z(0), q(0)) 2 S+, then the solution to the ODE is z(t) = (0, . . . ,0,N)

and q(t) = q(0) +
R

t

0
�(s)ds� �

K

Nt for t 2 [0, ⌧
q

] where ⌧

q

is the point at which q(·) hits 0 for the

first time.

Consider next the ODE in the space S0, which can be divided into S0 =
S

K

k=0 S0,k, where

S0,k = {(z, q)2 S0 : I(z) = k} . (EC.1)

For each k= 0,1, . . . ,K, if (z, q)2 S0,k, then

f

i

(z,�) =

8

>

<

>

:

0, i < k� 1
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k

z
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/�^ 1, i= k� 1
(1� �
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z
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/�)+, i= k

0, i > k.

(EC.2)

It is clear that f(z,�) is locally Lipschitz continuous in z on S0,k for each k = 0, . . . ,K � 1. First,

assume that the initial point (z(0), q(0)) 2 S0,0. This implies that z0(0)> 0, so there exists � > 0

such that z0(t)> 0 for all t2 [0, �). Plugging (EC.2) into (19)–(24) yields that for all t2 [0, �)

z

0
0(t) =��(t)+ �1z1(t),

z

0
1(t) = �(t)� �1z1(t)+ �2z2(t),

z

0
k

(t) =��

k

z

k

(t)+ �

k+1zk+1(t), 1< k <K,

z

0
K

(t) =��

K

z

K

(t),

q

0(t) = 0.

These ODEs can be written in the form (z0(t), q0(t)) = 0(t, z(t), q(t)), then  0 is locally Lipschitz

continuous in (z, q) on S0,0. According to Theorem VI in § 10 of Walter (1998), there exists a unique

solution in S0,0. Moreover, the solution can be extended to [0, ⌧0] where ⌧0 = inf{t > 0 : z0(t) = 0}.
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Next, assume in general that the initial point (z(0), q(0)) 2 S0,k for 0 < k < K. According to

(EC.2), there are two cases depending on the relation between �

k

z

k

(·) and �(·). If there exits �> 0

such that �
k

z

k

(t) �(t) for all t2 [0, �), then plugging (EC.2) into the set of ODEs (19)–(24) yields

that for all t2 [0, �)

z

0
i

(t) = 0, 0 i < k,

z

0
k

(t) =��(t)+ �

k

z

k

(t)+ �

k+1zk+1(t),

z

0
k+1(t) = �(t)� �

k

z

k

(t)� �

k+1zk+1(t)+ �

k+2zk+2(t),

z

0
i

(t) =��

i

z

i

(t)+ �

i+1zi+1(t), k+1< i<K,

z

0
K

(t) =��

K

z

K

(t),

q

0(t) = 0,

which we write as (z0(t), q0(t)) = 
k,(t, z(t), q(t)). Again, the function  

k, is locally Lipschitz in

(z, q) on S0,k, and the existence and uniqueness of the solution to the ODE follow from Theorem VI

in § 10 of Walter (1998). Moreover, the solution can be extended to the time ⌧1 = inf{t > 0 : z
k

(t) =

0 or �
k

z

k

(t)> �(t)}. If there does not exist such positive �, then for any ✏> 0, there exists t
✏

2 (0, ✏)

such that �
k

z

k

(t
✏

)> �(t
✏

) (so the inequality holds on a small neighbourhood around t

✏

). We show

in this case, any solution to the ODE transits from S0,k to S0,k�1 immediately after time 0. If not,

there exists a small � such that on I(z(t)) = k for all t2 [0, �]. Then for any small ✏2 (0, �),

z

k�1(✏) =

Z

✏

0

�(�(s)^ �

k

z

k

(s))+ �

k

z

k

(s)ds > 0,

which contradicts to that I(z(✏)) = k. So in this case, we study the ODE on the region S0,k[S0,k�1.

Plugging (EC.2) into the set of ODEs (19)–(24) yields that for all t2 [0, �)

z

0
i

(t) = 0, 0 i < k� 1,

z

0
k�1(t) =��(t)+ �

k�1zk�1(t)+ �

k

z

k

(t),

z

0
k

(t) = �(t)� �

k�1zk�1(t)� �

k

z

k

(t)+ �

k+1zk+1(t),

z

0
i

(t) =��

i

z

i

(t)+ �

i+1zi+1(t), k+1 i <K,

z

0
K

(t) =��

K

z

K

(t),

q

0(t) = 0,

which we write as (z0(t), q0(t)) = 
k,>

(t, z(t), q(t)). Note that  
k,>

is still locally Lipschitz continu-

ous on S0,k [S0,k�1. The existence and uniqueness of the solution follow again from Theorem VI in

§ 10 of Walter (1998). Moreover, the solution can be extended to the time ⌧2 = inf{t > 0 : z
k�1(t) =

0 or �
k�1zk�1(t)> �(t)}.
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Finally, we discuss the case where the initial point is in S0,K . Note that S0,K is a single point

(0, . . . ,N,0), at which the evolution of the ODE depends on whether the relation between �(·) and

�

K

z

K

(·). If there exists �> 0 such that �(t)� �

K

z

K

(t) = �

K

N for all t2 [0, �), then by (EC.2) the

set of ODEs becomes for all t2 [0, �)

z

0
i

(t) = 0, 0 j K,

q

0(t) = �(t)� �

K

z

K

(t).

In this case, the solution to the ODE will stay in S0,K [ S+ till ⌧3 = inf{t > 0 : q(t) = 0 and �(t)<

�

K

N}. If there does not exist such a positive �, following the same argument in the previous case,

any solution to the ODE transit from S0,K to S0,K�1 immediately after 0. So we study the ODE

on the region S0,K�1 [ S0,K . Plugging (EC.2) into the set of ODEs yields that for all t2 [0, �)

z

0
i

(t) = 0, 0 j K � 2,

z

0
K�1(t) =��(t)� �

K�1zK�1(t)+ �

K

z

K

(t), (EC.3)

z

0
K

(t) = �(t)+ �

K�1zK�1(t)� �

K

z

K

(t), (EC.4)

q

0(t) = 0.

Denote the above ODE by (z0(t), q0(t)) = 
K,>

(t, z(t), q(t)). It is clear that  
K,>

is locally Lipschitz

continuous on S0,K�1 [ S0,K . Similar to the previous analysis, the existence and uniqueness of the

solution to the ODE again follow from Theorem VI in § 10 of Walter (1998). Moreover, the solution

can be extended to time ⌧4 = inf{t > 0 : z
K�1(t) = 0 or �

K�1zK�1(t)> �(t)}.

Proof of Proposition 1 If the initial state (z(0), q(0))2 S+, then by (24) and (55),

q

0(t) = �� �

K

N < 0.

Thus, q will decrease to zero and the solution to the ODE will enter into S0. So we can assume

without loss of generality that the initial state (z(0), q(0))2 S0. Suppose at time s� 0, (z(s), q(s))2

S0,i, which is defined in (EC.1). In other words, i = I(z(s)). The idea is to show that (z(·), q(·))

will eventually enter S0,k0 , and then construct a Lyapunov function to show its convergence to the

invariant point (z̃(N),0). To study the evolution of the solution (z, q) from time s onwards, we

divide the discussion into two scenarios.

The first scenario is where i < k

0. The objective for this scenario is to show that the solution to

the ODE will go from S0,i to S0,i+1 and will never come back again. So the solution eventually enters

S0,k0 and will never come back to any S0,i, i < k

0. If i= 0, i.e., the initial point (z(s), q(s)) 2 S0,0,

then according to (19),

z

0
0(t) =��+ �1z1(t)��+ �1N

(a)

< 0,
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for t2 [s, s0], where s0 is the first time after s when z0 hits 0. In the above, (a) is due to (54) and

(56). This means that z0 will decrease to 0 making the solution to the ODE enter into S0,1, i.e., the

smallest index i changes from 0 to 1 at time s0. If 0< i< k

0, i.e., (z(s), q(s))2 S0,i, then according

to (19)–(21),

z

0
j

(t) = 0, 0 j < i� 1,

z

0
i�1(t) = 0�

�

i

z

i

(t)

�

�� �

i�1zi�1(t)+ �

i

z

i

(t)

=��

i�1zi�1(t) = 0,

z

0
i

(t) =
�

i

z

i

(t)

�

��

✓

1�
�

i

z

i

(t)

�

◆

�� �

i

z

i

(t)+ �

i+1zi+1(t)

=��+ �

i

z

i

(t)+ �

i+1zi+1(t)
(b)

< ��+ �

i+1N

(c)

< 0,

for t 2 [s, s
i

], where s

i

is the first time after s when z

i

hits 0. In the above, (b) follows from (54)

and (c) follows from (56). So z

i

will decrease to 0 and making the solution to the ODE enter S0,i+1.

Continuing the argument, the solution to the ODE enters into S0,k0 after a finite time.

For the rest of this proof, we devote to the second scenario where i� k

0. The dynamics of the

ODE are much more complicated in this situation. We also need to take the control threshold K

into account. To better understand the evolution of the ODE in this scenario, let’s start from the

easy case where K = k

0 +1. Note that by (56), we always have

�

K�1zK�1(t) �< �

K

N. (EC.5)

If i=K (which equals k0 +1), i.e., (z(s), q(s))2 S0,K , then (19)–(20) yield

z

0
j

(t) = 0, j <K � 2, (EC.6)

z

0
K�1(t) =�(�^ �

K

N)+ �

K

N. (EC.7)

By (EC.5), z0
K�1(t) = �

K

N � � > 0. This implies that the solution to the ODE will immediately

enter S0,K�1. So without loss of generality, we can assume that i=K�1, i.e., (z(s), q(s))2 S0,K�1.

According to (19)–(22),

z

0
j

(t) = 0, j <K � 2, (EC.8)

z

0
K�2(t) =�(�^ �

K�1zK�1(t))+ �

K�1zK�1(t), (EC.9)

z

0
K�1(t) = �^ �

K�1zK�1(t)� (�� �

K�1zK�1(t))
+
� �

K�1zK�1(t)+ �

K

z

K

(t), (EC.10)

z

0
K

(t) = (�� �

K

z

K�1(t))
+
� �

K

z

K

(t), (EC.11)
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for all t2 [s,1). This is valid for all t� s is because z

0
K�2(t) = 0 due to (EC.5), implying that the

solution to the ODE will never enter S0,K�2. The inequality (EC.5) also implies that

z

0
K�2(t) = 0,

z

0
K�1(t) =��+ �

K�1zK�1(t)+ �

K

z

K

(t),

z

0
K

(t) = �� �

K�1zK�1(t)� �

K

z

K

(t).

For this situation, we define the Lyapunov function

L(t) =
1

2

K

X

j=K�1

(z
j

(t)� z̃

j

)2.

Note that z
K�1(t)+ z

K

(t) =N . Plugging (57) into the above yields

d

dt

L(t) = [��+ �

K�1zK�1(t)+ �

K

z

K

(t)]
n

[z
K�1(t)� z̃

K�1]� [z
K

(t)� z̃

K

]
o

= [��+ �

K�1N +(�
K

� �

K�1)zK(t)]
n

(N � 2z
K

(t))+
2�� �

K

N � �

K�1N

�

K

� �

K�1

o

=
�2

�

K

� �

K�1

[��+ �

K�1N +(�
K

� �

K�1)zK(t)]
2
 0.

The above derivative equals 0 only when z(t) = z̃. It is clear that L(t)� 0 with equality holds only

when z(t) = z̃. Note that the ODE in this proof is autonomous since �(s)⌘ �. We can view z̃(·)⌘ z̃

as the “zero” solution to the ODE, by Theorem II in § 30 of Walter (1998), z(t)! z̃ as t! 0.

Similar application of Lyapunov functions is also used by Perry and Whitt (2011c) to study the

global asymptotic stability of the solution to the ODE for a di↵erent service model. For the rest of

this proof, we will use the same argument repeatedly. For simplicity, we omit repeating the above

logic, and only focus on constructing a Lyapunov function L(t) such that L(t)� 0 with equality

holds only when z(t) = z̃ and the derivative is strictly negative when L(t)> 0. Consider now the

general and also more di�cult case where K > k

0 + 1. In this case, the smallest index i has the

freedom to range between k

0 and K, which are more than two levels apart. Unlike the first scenario,

the smallest index i may not be monotonic. It is possible that i goes up and down, calling for a

di↵erent approach. Note that by (56), the following always holds

�

k

0
z

k

0(t) �< �

k

0+1N. (EC.12)

If i=K, i.e., (z(s), q(s))2 S0,K , then the ODE takes the same form as (EC.6) and (EC.7). It is clear

that (EC.12) implies z0
K�1(t)> 0. Thus, the solution to the ODE will immediately enter S0,K�1. If

i=K � 1, i.e., (z(s), q(s)) 2 S0,K�1, then the ODE takes the same form as (EC.8)–(EC.11). Then

(EC.12) implies that

z

0
K�2(t) = 0,

z

0
K�1(t) =��+ �

K�1zK�1(t)+ �

K

z

K

(t)���+ �

K�1N > 0,

z

0
K

(t) = �� �

K�1zK�1(t)� �

K

z

K

(t)< 0.
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So on S0,K�1, zK�1 increases and z

K

decreases until some point s1 where �

K�1zK�1(s1) > �. At

that time, by (EC.9), we have z

0
K�2(s1)> 0. So the solution to the ODE will transit from S0,K�1

to S0,K�2. Now, assume that k0
 iK � 2. On S0,i, according to (19)–(24),

z

0
j

(t) = 0, j < i� 1,

z

0
i�1(t) =�(�^ �

i

z

i

(t))+ �

i

z

i

(t),

z

0
i

(t) = �^ �

i

z

i

(t)� (�� �

i

z

i

(t))+ � �

i

z

i

(t)+ �

i+1zi+1(t), (EC.13)

z

0
i+1(t) = (�� �

i

z

i

(t))+ � �

i+1zi+1(t)+ �

i+2zi+2(t), (EC.14)

z

0
j

(t) =��

j

z

j

(t)+ �

j+1zk+1(t), i+1< j <K, (EC.15)

z

0
K

(t) =��

K

z

K

(t). (EC.16)

Define the Lyapunov function

L

K�1(t) = (z
K�1(t)+ z

K

(t))+ z

K

(t).

We then have

d

dt

L

K�1(t) =��

K�1zK�1(t)� �

K

z

K

(t) 0,

and d

dt

L

K�1(t) = 0 if and only if (z
K�1(t), zK(t)) = (0,0). So for any

0< �

�

k

0+1N ��

1+ �

k

0+1

P

K

l=1 �
�1
l

,

there exists a time s

K�1 such that z

K

(t) < �/�

K

and z

K�1(t) < �/�

K�1 for all t � s

K�1. Now,

we apply an induction argument for j = K � 2, . . . , k0 + 2. Suppose there exists s

j+1 such that

z

j+1(t)< �/�

j+1 for all t� s

j+1. We can then show that there exists s
j

> s

j+1 such that z
j

(t)< �/�

j

for all t� s

j

. Construct the Lyapunov function

L

j

(t) =
1

2

⇣

K

X

l=j

z

l

(t)
⌘2

+
K

X

l=j+1

z

l

(t)+ . . .+
K

X

l=K

z

l

(t).

Then
d

dt

L

j

(t) =
⇣

K

X

l=j

z

l

(t)
⌘⇣

K

X

l=j

z

0
l

(t)
⌘

+
K

X

l=j+1

z

0
l

(t)+ . . .+
K

X

l=K

z

0
l

(t).

To obtain the desired conclusion, we further analyze the derivative according to the following three

subcases, depending on the relation between level j and smallest index i. It is possible that the

value of i may change under each condition, but this change will not cause any trouble when we
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study the evolution of z
j

. Subcase (1): If j > i+1, then the evolution of z
l

, l= j, . . . ,K�2, follows

(EC.15), thus

d

dt

L

j

(t) =�

⇣

K

X

l=j

z

l

(t)
⌘

�

j

z

j

(t)� �

j+1zj+1(t)� . . .� �

K

z

K

(t) 0.

The derivative equals 0 only when z

l

(t) = 0 for all l= j, . . . ,K. Subcase (2): If j = i+1, then the

evolution of z
l

, l= j+1, . . . ,K � 1, follows (EC.15), but that of z
j

follows (EC.14). Thus

z

0
j

(t) = (�� �

j�1zj�1(t))
+
� �

j

z

j

(t)+ �

j+1zj+1(t),

=

⇢

��

j

z

j

(t)+ �

j+1zj+1(t) if �< �

j�1zj�1(t),
�� �

j�1zj�1(t)� �

j

z

j

(t)+ �

j+1zj+1(t) if �� �

j�1zj�1(t).

When �< �

j�1zj�1(t), the analysis reduces to Subcase (1). When �� �

j�1zj�1(t),

d

dt

L

j

(t) =
⇣

K

X

l=j

z

l

(t)
⌘

[�� �

j�1zj�1(t)� �

j

z

j

(t)]� �

j+1zj+1(t)� . . .� �

K

z

K

(t).

Since �

k

0
 �

j�1 < �

j

and the smallest non-zero level i= j� 1, then

�� �

j�1zj�1(t)� �

j

z

j

(t)

 �� �

j�1(zj�1(t)+ z

j

(t))

 �� �

k

0(N �

K

X

l=j+1

z

l

(t)).

By the induction assumption that z
l

(t) �/�

l

, l= j+1, . . . ,K,

�� �

k

0(N �

K

X

l=j+1

z

l

(t))

 �� �

k

0(N � �

K

X

l=j+1

�

�1
l

)< 0,

where the last inequality is due to the choice of �. This implies that d

dt

L

j

(t) 0 with the equality

holding only when z

l

(t) = 0 for all l = j, . . . ,K. Subcase (3): If j = i, then according to (EC.13)–

(EC.16)

d

dt

L

j

(t) =
⇣

K�1
X

l=j

z

l

(t)
⌘

[�^ �

j

z

j

(t)� �

j

z

j

(t)]

+ (�� �

j

z

j

(t))+ � �

j+1zj+1(t)

� �

j+2zj+2(t)� . . .� �

K

z

K

(t).

(EC.17)

Since the smallest non-zero level i= j and z

l

(t)< �/�

l

for l > j by the induction, we have

z

j

(t)�N �

K

X

l=j+1

z

l

(t)�N � �

K

X

l=j+1

�

�1
l

.
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By the fact that �
k

0
< �

k

0+1 < �

j

and the choice of �, we have �< �

j

z

j

(t). Plugging this inequality

into (EC.17) reveals that d

dt

L

j

(t)  0 with the equality holding only when z

l

(t) = 0 for all l =

j, . . . ,K. This property of the Lyapunov function L

j

implies that there exists an s

j

such that

z

j

(t)< �/�

j

for all t > s

j

. This completes the induction argument.

Note that the induction only goes down to j = k

0 + 2. What we have now is that z

l

(t)< �/�

l

,

l =K,K � 1, . . . , k0 + 2, for all t� s

k

0+2. This implies that (z(t), q(t)) 2 S0,i where either i= k

0 or

i= k

0+1. If i= k

0+1, then by (EC.12) the solution to the ODE immediately makes the transition

from S0,k0+1 to S0,k0 . Then, we only need to focus on the sub-region S0,k0 . We now construct a final

Lyapunov function

L

k

0(t) =
1

2

�

z

k

0+1(t)� z̃

k

0+1

�2
+

K

X

l=k

0+2

z

l

(t)+
K

X

l=k

0+3

z

l

(t)+ . . .+
K

X

l=K

z

l

(t).

It is clear that L
k

0(t)� 0 and that the derivative of the Lyapunov function is

d

dt

L

k

0(t) =
�

z

k

0+1(t)� z̃

k

0+1

�

z

0
k

0+1(t)� �

k

0+2zk0+2(t)� �

k

0+3zk0+3(t)� . . .� �

K

z

K

(t). (EC.18)

According to (EC.12) and (EC.13)–(EC.16),

z

0
k

0+1(t) = �� �

k

0
z

k

0(t)� �

k

0+1zk0+1(t)+ �

k

0+2zk0+2(t).

Applying the definition of z̃ in (57) and some algebra yields

z

0
k

0+1(t) =��

k

0 (z
k

0(t)� z̃

k

0)� �

k

0+1 (zk0+1(t)� z̃

k

0+1)+ �

k

0+2zk0+2(t)

= (�
k

0
� �

k

0+1) (zk0+1(t)� z̃

k

0+1)+ �

k

0

K

X

l=k

0+2

z

l

(t)+ �

k

0+2zk0+2(t)

= (�
k

0
� �

k

0+1) (zk0+1(t)� z̃

k

0+1)+ �

k

0

K

X

l=k

0+3

z

l

(t)+ (�
k

0 + �

k

0+2)zk0+2(t). (EC.19)

When z

k

0+1(t)< z̃

k

0+1, it is clear by (EC.19) that z0
k

0+1(t)> 0. So d

dt

L

k

0(t)< 0. When z

k

0+1(t)> z̃

k

0+1,

recall that

z

l

(t) �/�

l

for all l� k

0 +2. (EC.20)

So � can be chosen small enough such that

 :=
�+ �

k

0
P

K

l=k

0+2 �/�l

�

k

0+1 � �

k

0


�

k

0+2

�

k

0 + �

k

0+2

.

If z
k

0+1(t)� z̃

k

0+1 > , then according to (EC.19) and (EC.20), z0
k

0+1(t)< 0. Thus d

dt

L

k

0(t)< 0. If

0< z

k

0+1(t)� z̃

k

0+1  , then plugging (EC.19) into (EC.18) yields

d

dt

L

k

0(t) =�(�
k

0+1 � �

k

0)
�

z

k

0+1(t)� z̃

k

0+1

�2

�

⇥

�

k

0+2 � (�
k

0 + �

k

0+2)(zk0+1(t)� z̃

k

0+1)
⇤

z

k

0+2(t)

�

K

X

l=k

0+3

⇥

�

l

� �

k

0(z
k

0+1(t)� z̃

k

0+1)
⇤

z

l

(t).
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The choice of  implies that

�

k

0+2 � (�
k

0 + �

k

0+2)(zk0+1(t)� z̃

k

0+1)� 0,

�

l

� �

k

0(z
k

0+1(t)� z̃

k

0+1)� 0.

Thus d

dt

L

k

0(t)< 0. Moreover, d

dt

L

k

0(t) = 0 only when z

k

0+1(t) = z̃

k

0+1 and z

l

(t) = 0 for all l� k

0 +2.

These properties of the Lyapunov function imply that z(t)! z̃ as t!1.

EC.2. Proofs in the Stochastic Analysis

Proof of Corollary 2 By (10), we need only to show convergence for the expectation of the

holding cost,

E


1

T

Z

T

0

h

�

Z̄

n(s), Q̄n(s)
�

ds

�

!

1

T

Z

T

0

h(z(s), q(s))ds as n!1. (EC.21)

By Theorem 2 and the continuous mapping theorem,

1

T

Z

T

0

h

�

Z̄

n(s), Q̄n(s)
�

ds)

1

T

Z

T

0

h(z(s), q(s))ds.

Note that Z̄n(s) N̄

n and Q̄

n(s) Q̄

n(0)+ ⇤̄n(s) for any s� 0. By monotonicity of h and (28),

1

T

Z

T

0

h

�

Z̄

n(s), Q̄n(s)
�

ds h

�

N̄

n

e, Q̄

n(0)+ ⇤̄n(T )
�

 h

�

2Ne, Q̄

n(0)+ ⇤̄n(T )
�

for all large enough n. For the constant C specified in Assumption 2,

E
⇥

h

�

2Ne, Q̄

n(0)+ ⇤̄n(T )
�⇤

E
⇥

h

�

2Ne, Q̄

n(0)+ ⇤̄n(T )
�

|Q̄

n(0)+ ⇤̄n(T )C

⇤

P(Q̄n(0)+ ⇤̄n(t)C)

+E
⇥

h

�

2Ne, Q̄

n(0)+ ⇤̄n(T )
�

|Q̄

n(0)+ ⇤̄n(t)>C

⇤

P(Q̄n(0)+ ⇤̄n(t)>C)

 h(2Ne,C)+E[A exp(↵Q̄n(0)) exp(↵⇤̄n(T ))]

 h(2Ne,C)+E[A exp(↵Q̄n(0))] exp

✓

⇣

exp
⇣

↵

n

⌘

� 1
⌘

n

Z

T

0

�̄

n(s)ds

◆

.

By Assumption 1, exp
⇣

�

exp
�

↵

n

�

� 1
�

n

R

T

0
�̄

n(s)ds
⌘

< 1. This combined with (29) yields that
1
T

R

T

0
h

�

Z̄

n(s), Q̄n(s)
�

is uniformly integrable. According to Theorem 5.5.2 in Durrett (2010), we

have (EC.21).

Proof of Lemma 1 It su�ces to prove the relative compactness of {(Z̄n

, Q̄

n)} and {⌫

n

} sep-

arately. We have already shown the compactness of the space M because of the compactness of

[0, T ]⇥ Z̄K+1. So by Prohorov’s theorem (cf. Theorem 11.6.1 in Whitt (2002)), {⌫n

} is relatively

compact in M. It remains to verify that the sequence {(Z̄n

, Q̄

n)}
n2N is relatively compact.
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By the assumption of initial condition (25), for any ✏> 0 there exists a C > 0 and n0 > 0 such

that

P
�

|Q̄

n(0)|>C

�

< ✏, for all n> n0. (EC.22)

Note that Z̄n

k

(·)N

n

/n 2N for su�ciently large n. For any � > 0, define the modulus of conti-

nuity w
T

(y(·), �) for a function x on [0, T ] as

w
T

(x(·), �) = sup
|t�s|�, s,t2[0,T ]

|x(t)� y(s)|.

Now, we study the modulus of continuity of Q̄n and Z̄

n

k

, k= 0, . . . ,K. According to (38), we have

|Q̄

n(t)� Q̄

n(s)| |M̄

n

a

(t)� M̄

n

a

(s)|+ |M̄

n

K

(t)� M̄

n

K

(s)|

+

Z

t

s

�̄

n(⌧)d⌧ + �

k

N̄

n

|t� s|.

Note that the last two terms are deterministic, so for any � < ✏/(3 sup
n

(sup
⌧2[0,T ] �̄

n(⌧) +

N̄

nmax
k

�

k

)),

Pn

⇣

sup
|t�s|�, s,t2[0,T ]

|Q̄

n(t)� Q̄

n(s)|> ✏

⌘

 Pn

⇣

sup
|t�s|�, s,t2[0,T ]

|M̄

n

a

(t)� M̄

n

a

(s)|> ✏/3
⌘

+Pn

⇣

sup
|t�s|�, s,t2[0,T ]

|M̄

n

k

(t)� M̄

n

k

(s)|> ✏/3
⌘

Note that both M̄

n

a

and M̄

n

k

are square-integrable martingales. Thus, Doob’s inequality (cf. Propo-

sition 2.2.16 in Ethier and Kurtz (1986)) implies that M̄n

a

) 0 and M̄

n

k

) 0 as n!1. So

Pn

⇣

w
T

(Q̄n(·), �)> ✏

⌘

< ✏, for all large n. (EC.23)

A similar argument based on (35)–(37) can show that the same inequality as the above holds for

Z̄

n

k

, for all k= 0, . . . ,K. This implies that

Pn

⇣

w
T

((Z̄n

, Q̄

n)(·), �)> ✏

⌘

< ✏, for all large n. (EC.24)

Inequalities (EC.22) and (EC.24) have verified that conditions (i) and (ii) of Theorem 3.7.2 in

Ethier and Kurtz (1986) hold for the sequence {(Z̄n

, Q̄

n)}
n2N. Thus the relative compactness has

been proved.

Proof of Lemma 3 We now restrict our attention to a convergent subsequence that converges

to the limit ((z, q),⌫). With a little abuse of the notation, we still use the superscript n to index the

convergent subsequence. It is convenient to assume, using Skorokhod’s representation theorem (cf.

Theorem 3.1.8 in Ethier and Kurtz (1986)), that the stochastic process for all n as well as the limit

are defined on the same probability space on which the convergence ((Z̄n

, Q̄

n),⌫n)! ((z, q),⌫) is

almost surely.
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According to the stochastic dynamic equations (5)–(8), for any bounded functions g : Z̄K+1
+ !R,

g(Zn(t))� g(Zn(0))

=
K�1
X

j=0

Z

t

0

[g (Zn(s�)� e

j

+ e

j+1)� g(Zn(s�))]1{Zn(s�)2A
j

}d⇤
n(s)

+
K

X

j=1

Z

t

0

[g (Zn(s�)� e

j

+ e

j�1)� g(Zn(s�))]1{Qn(s�)=0}dD
n

j

(s).

Since M̄

n

a

and M̄

n

k

defined in (33) and (34) are Martingales, it follows that

M̄

n

g

(t) =
1

n

[g(Zn(t))� g(Zn(0))]

�

K�1
X

j=0

Z

t

0

[g(Zn(s�)� e

j

+ e

j+1)� g(Zn(s�))]1{Zn(s�)2A
j

}�̄
n(s)ds

�

K

X

j=1

Z

t

0

[g (Zn(s�)� e

j

+ e

j�1)� g(Zn(s�))]1{Q̄n(s�)=0}�jZ̄
n

j

(s)ds

is a Martingale for all bounded function g : Z̄K+1
+ ! R. Since g is bounded, E[(M̄n

g

(t))2] ! 0 as

n ! 1. It follows from Doob’s inequality (cf. Proposition 2.2.16 in Ethier and Kurtz (1986))

that M̄

n

g

) 0 as n!1. Suppose I(z(t)) = k for some k = 0,1, . . . ,K. The continuity of the limit

(z, q) and the convergence imply that there exists a small interval [t, t+ �] where Z̄

n

k

(·)> 0 for all

su�ciently large n. The boundedness of the function g implies that 1
n

[g(Zn(t+ �))� g(Zn(t))]! 0

as n!1. Thus, the rest of the terms in M̄

n

g

(t+ �)� M̄

n

g

(t) will converge, as n!1, to

k^(K�1)
X

j=0

Z

[t,t+�]⇥Z̄

K+1
+

[g(y� e

j

+ e

j+1)� g(y)]1{y2A
j

}�(s)⌫(ds⇥ dy)

+
K

X

j=k

Z

[t,t+�]⇥Z̄

K+1
+

[g (y� e

j

+ e

j�1)� g(y)]1{q(s)=0}�jzj(s)⌫(ds⇥ dy)

which should be 0. Letting �! 0 gives (51).
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